Atmospheric Electroscope


Fig. 90.







The simplest instrument for ascertaining at any time the electric condition of the atmosphere is an electroscope composed of two equal pieces of gold leaf, suspended from a brass support, and insulated, as well as protected from the movement of the air, by a glass covering. Fig. 90 represents such an instrument. The cap of the brass support is fitted for the reception, in the vertic

l direction, of a metallic rod, not less than two or three feet in length. The top of the rod carries a clip. The instrument acts according to the law, that bodies similarly electrified repel each other; but when dissimilarly electrified, they attract each other. To make an observation, the instrument is placed in the open air, and a lighted piece of cigar fusee, or touch-paper, is fixed in the clip. The electricity of the air is collected by the substance undergoing combustion, and conducted by the rod to the gold leaf; and the pieces, being similarly electrified, separate more or less according to the amount of electricity present. The kind is determined by the effect of either an excited stick of sealing-wax or rod of glass upon the electrified gold leaf. A rod of glass, when rubbed briskly with a silk handkerchief or piece of woollen cloth, becomes positively electrified, or excited, as it is termed. A stick of sealing-wax, similarly treated, acquires the negative state. If, therefore, an excited glass rod be presented to the cap of the instrument, and it cause the pieces of gold leaf to diverge still further, the electric state of the air must be analogous to that of the glass, that is, positive; if they approach, it is negative. On the contrary, if a stick of sealing-wax be used, the pieces will be repelled more apart if they have acquired negative electricity from the air; and they will converge if they have a positive charge.



By means of this very simple instrument, meteorological observers can readily ascertain the electric condition of the lower air at any time.



Note.—A book containing strips of gold leaf is sent with the Electrometer to replace the gold leaves when torn or broken in use.



To mount fresh gold leaves, unscrew the brass plate to which is attached the rod supporting the leaves; then moisten with the breath the flat piece of brass, and press it gently down on one strip of gold, whilst the book is only partly opened; the second leaf is attached in the same manner.






132. Volta’s Electrometer is similar to the instrument just described, except that instead of gold leaf two light pieces of straw, or two pith balls, are freely suspended from the conductor; the amount of the electric charge being estimated from the degrees of divergence, shown by a graduated arc.






133. Peltier’s Electrometer is a much superior instrument in point of sensibility. A tall glass tube an inch or more in diameter, is connected to a glass receiver, mounted on a base fitted with levelling screws. At the top of the tube is formed a globe from four to five inches in diameter, which is thickly gilt on the exterior, so as to form a good conducting surface. A wire passes from the ball down the tube into the receiver, where it is bent up, and ends in a steel point over the centre of the base. A bent wire, carrying a small magnetic needle, is balanced on the steel point, so that the magnet, with the fine wire, arranges itself horizontally in the direction of the magnetic meridian. If any cloud or portion of air in the neighbourhood be in an electrical state, it will act by induction upon the gilt ball, and the needle will be deflected from its north and south direction.



A graduated circle indicates the number of degrees of the deflection, which will be greater or less according to the tension of the electricity. To ascertain whether the electricity is positive or negative, a stick of shellac or glass must be employed, as already described.



Fig. 91.







134. Bohnenberger’s Electroscope may be fitted with a metallic conductor, and used with great advantage for observing atmospheric electricity. “The principal parts of the instrument, as improved by Becquérel, are the following:—A B, fig. 91, is a small dry galvanic pile of from 500 to 800 pairs, about a quarter of an inch in diameter; when the plates are pressed together, such a pile will be from 2 to 2½ inches in length. The wires, which are bent so as to stand above the pile, terminate in two plates, P and M, which are the poles of the pile. These plates, which are 2 inches by ½ an inch, are parallel and opposite to each other. It is convenient for their opposite sides to be slightly convex, for them to be gilded or coated with platinum, and for them to run on the polar wires, by the latter being made to pass through a small hole in them. One of these plates will always be in a state of positive, and the other of negative, electricity; between them suspend the very fine gold leaf, D G, which is attached to the conductor, C D, of copper wire. If the leaf hang exactly between the two plates, it is equally attracted by each, and will therefore be in a state of repose. The apparatus should be protected by a bell-glass, fitting exactly, and having an opening at the top through which the copper wire, C D, passes; the wire, however, is insulated by its being contained in a glass tube, which is made to adhere to the bell-glass by means of a small portion of shellac or gum-lac. Screw on a metal ball or plate, to impart to it the electricity you wish to test, which will be conveyed by the copper wire to the gold leaf, and the latter will immediately move towards the plate which has the opposite polarity. This electroscope is, beyond doubt, one of the most delicate ever constructed, and is well adapted to show small quantities of positive and negative electricity.



“To ensure the susceptibility of electroscopes and electrometers placed under bell-glasses, precautions should be taken to render the air they contain as dry as possible, which may be effected by enclosing in a suitable vessel a little melted chloride of calcium beneath the glass.”



The galvanic pile employed in this electroscope is that invented by Zamboni. “It differs from the common hydro-electric batteries principally in this, that the presence of the electromotive liquid is dispensed with, and that in its place is substituted some moist substance of low conducting power, generally paper. The electromotors in these piles are composed for the most part of Dutch gold (copper) and silver (zinc) paper pressed one on the other, with their paper sides together, out of which discs are cut with a diameter of from a quarter of an inch to an inch. More powerful pairs of plates may be obtained by using only the silver paper and smearing its paper side with a thin coat of honey, on which some finely pulverized peroxide of manganese has been sprinkled, and all the sides similarly coated are presented one way. Powerful pairs of plates may also be made by pasting pure gold leaf on the paper side of zinc-paper. These plates are then to be arranged, just as in the ordinary voltaic pile, one above the other, so that the similar metallic surfaces may all lie one way; press them tightly together; tie them with pretty stout silk threads, and press them into a glass tube of convenient size. The metal rims of the tubes, which must be well connected with the outermost pairs of plates, form the poles of the pile, the negative pole being in the extreme zinc surface, and the positive in the extreme copper or manganese surface.



“The electromotive energy called into action in these dry piles is less than that excited in the moist or hydro-electric piles, principally on account of the imperfect conduction of the paper. The accumulation of electricity at their poles also goes on less rapidly, and consequently the electrical tension continues for a long while unaltered; whereas, in all moist piles, even in the most constant of them, the tension is maintained, comparatively speaking, for but a short time, on account of








More

;