Newman&rsquos Mountain Barometer


Fig. 29.







Fig. 29 is an illustration of the mountain barometer known as Newman’s. The cistern consists of two separate compartments;—the top of the lower and the bottom of the upper, being perfectly flat, are pivoted closely together at the centres, so that the lower can move through a small arc, when turned by the hand. This movement is limited by two stops. The top of the lower

compartment and the bottom of the upper have each a circular hole, through which the mercury communicates. When the instrument is required for observation, the cistern is turned close up to the stop marked “open” or “not portable.” When it is necessary to pack it for travelling, the mercurial column must be allowed to fill the tube by sloping the barometer gently; then invert it, and move the cistern to the stop marked “shut” or “portable.” In this condition, the upper compartment is completely filled with mercury, and consequently that in the tube cannot move about, so as to admit air or endanger the tube. Nor can the mercury pass back to the lower compartment, as the holes are not now coincident, and the contact is made too perfect to allow the mercury to creep between the surfaces. The tube does not enter the lower compartment, which is completely full of mercury when the instrument is arranged for observation. The spare capacity of the upper cistern is sufficient to receive the mercury which descends from the tube to the limit of the engraved scale, which in these barometers generally extends only to about 20 inches. A lower limit could of course be given by increasing the size of the cisterns, which it is not advisable to do unless for a special purpose. This barometer may be had mounted in wood, or in brass frame. If in wood, it has a brass shield, which slides round the scale part of the frame, so as to be easily brought in front of the tube and scale as a protection in travelling; the vernier screw, in this case, being placed at the top of the instrument. When the scale is graduated with true inches, the neutral point, the capacity and capillarity corrections should be marked on the frame. The graduated scales, however, placed on these barometers in brass frames, are usually artificial inches, like the Kew plan of graduation; the advantage being that one simple correction only is required, viz. one for index error and capillarity combined, which can always be readily determined by comparison with a standard barometer; moreover, as no adjustment of cistern is).






40. NEGRETTI & ZAMBRA’S PATENT MOUNTAIN AND OTHER BAROMETERS.



Fig. 30.




This invention is intended to make mountain and other barometers of standard accuracy stronger, more portable, and less liable to derangement, when being carried about, than heretofore, by dispensing with the ordinary flexible cistern containing the mercury at the bottom of the instrument, and adapting in lieu thereof a rigid cistern constructed of glass and iron. The cistern is composed of a glass cylinder, which is secured in a metallic tube or frame. In order to render the cistern mercury-tight at top and bottom, metal caps are screwed into the tube or frame, and bear against leather washers placed between them and the edges of the glass cylinder. The upper cap of the cistern is tapped with a fine threaded screw to receive the iron plug or socket, into which the barometer tube is securely fixed. The whole length of this plug has a fine screw cut upon it by which the cistern can be screwed up or down. At the side of this plug or socket, extending from the lower end to within half an inch of the top, is cut a groove for admitting the air to the surface of the mercury within the cistern when the barometer is in use. An ivory point is screwed into the under surface of the plug, carrying the barometer tube. This ivory point is very carefully adjusted by measurement to be the zero point of the instrument, from which the barometer scale of inches is divided. The surface of the mercury in the cistern is adjusted to the zero point by screwing the cistern up or down until the ivory point and its reflected image are in contact.



The instrument (fig. 30) is shown in a state of adjustment, ready to take an observation; but when it is desired to render it portable, it must be inclined, until mercury from the cistern fills the tube; the cistern must then be screwed up on the socket, so as to bring the face of the upper cap against the under side of the shoulder of the cover immediately above it; the instrument may then be carried without being liable to derangement.



Precautions necessary in using the Mountain Barometer.—On removing the barometer from its case after a journey, allow it to remain with its scale end downward, whilst the cistern is unscrewed to the extent of one turn of the screw, after which slightly shake the cistern; the mercury in it will then completely fill the end of the barometer tube, should any portion of it have escaped therefrom.



The barometer is then inverted, and if it be desired to make an observation, suspend it vertically from its stand by the ring at top. The cistern must then be unscrewed, until the surface of the mercury is brought just level with the extreme end of the ivory or zero point fixed to the iron plug on which the glass cistern moves up and down.



Should the elevation of the place where the barometer is to be used be considerably above the sea level, it will be well—after suspending it from the stand—to unscrew the cistern several turns, holding the barometer in an oblique position, as at great heights the mercury will fall considerably quicker than the cistern can be unscrewed, thereby filling it to overflowing; but by partly unscrewing the cistern first, room is given for the reception of a fall of mercury to the extent of several inches.



The cistern must not be unscrewed when the Instrument is INVERTED more than two turns of the screw, otherwise the mercury will flow out through the groove.



It is found safer when travelling to carry the barometer in a horizontal position, or with its cistern end uppermost.



To clean the Barometer.—Should at any time the mercury in the cistern become oxidised, and reading from its surface be difficult, it can be readily cleaned by removing the cistern and its contained mercury from the barometer frame by unscrewing it when in a horizontal position; this precaution is necessary that the mercury in the tube may not escape, and thereby allow air to enter. The cistern must then be emptied, and with a dry clean leather, or silk handkerchief, well cleaned.



The operation of cleaning being performed, return the cistern to the frame, and screw it until the face is brought up against the under side of the shoulder, still keeping the instrument horizontal. The cistern is now ready for re-filling, to do which stand the barometer on end head downwards, and remove the small screw at bottom; through the aperture thus opened, pour in mercury, passing it through a paper funnel with a very small aperture. It is well to pass the mercury through a very small funnel two or three times before returning it to the barometer cistern, as by this process all particles of dust or oxide adhere to the paper, and are effectually removed.



Should any small quantity of the mercury be lost during the operation of cleaning, it is of no importance so long as sufficient remains to allow of adjustment to the zero point. This latter constitutes one of the great advantages of this new instrument over the ordinary barometer; for, in the majority of cases, after an instrument has been compared carefully with a standard, should mercury be lost, there is no means of correcting the error unless a standard barometer be at hand; the new barometer is, in this respect, independent, a little mercury more or less being unimportant.






41. Short Tube Barometer.—This is simply a tube shorter, as may be required, than that necessary to show the atmospheric pressure at the sea level. It is convenient for balloon purposes, and for use at mountain stations, being of course a special construction.








More

;