Thermometer Screen For Use At Sea


This screen, or shade, was designed by Admiral FitzRoy, and has been in use for several years on board H.M. vessels and many merchant-ships. It is about twenty-four inches long by twelve wide and eight deep; having lattice-work sides, door, and bottom; with perforation also at top, so contrived that the air has free access to the interior, while the direct rays of the sun, rain, and sea spray are effectually excluded from the thermometers mounted inside. There is ample space for two therm
meters placed side by side on brackets, at least three inches from each other or any part of the exterior of the screen. One thermometer should be fitted up as a “wet bulb” (see p. 105). A small vessel of water can easily be fixed inside the screen so as to retain its position and contents under the usual motions of the ship; and by means of a piece of cotton-wick, or muslin rag tied round the bulb of the thermometer and trailing into the cup of water, keep the bulb constantly moist.



Self-registering thermometers should be protected by a similar screen. It has been found that thermometric observations made at sea are not valuable for scientific purposes unless the instruments have been duly protected by such a screen.



Fig. 95.







150. Anemoscope, or Portable Wind Vane for travellers, with compass, bar needle, &c., shows the direct course of the wind to half a point of the compass.






151. Evaporating Dish, or Gauge (fig. 95), for showing the amount of evaporation from the earth’s surface. This gauge consists of a brass vessel, the area or evaporating surface of which is accurately determined; and also a glass cylindrical measure, graduated into inches, tenths, and hundredths of inches. In use, the evaporating gauge is nearly filled with water, the quantity having been previously measured by means of the glass cylinder; it is then placed out of doors, freely exposed to the action of the atmosphere; after exposure, the water is again measured, and the difference between the first and second measurement shows the amount of evaporation that has taken place. If rain has fallen during the exposure of the gauge, the quantity collected by it must be deducted from the measured quantity; the amount is shown by the quantity of rain collected in the rain gauge. The wire cage round the gauge is to prevent animals, birds, &c., from drinking the water.






152. Dr. Babington’s Atmidometer, or instrument for measuring the evaporation from water, ice or snow, consists of an oblong hollow bulb of glass or copper, beneath which and communicating with it by a contracted neck is a second globular bulb, duly weighted with mercury or shot. The upper bulb is surmounted by a small glass or metal stem, having a scale graduated to grains and half-grains; on the top of which is fixed horizontally a shallow metal pan. The bulbs are immersed in a vessel of water having a circular hole in the cover through which the stem rises. Distilled water is then gradually poured into the pan above, until the zero of the stem sinks to a level with the cover of the vessel. Thus adjusted, as the water in the pan evaporates, the stem ascends, and the amount of evaporation is indicated in grains. This instrument affords a means of measuring evaporation from ice or snow. An adjustment for temperature is necessary.






153. Cloud Reflector.—At the International Exhibition 1862, Mr. J. T. Goddard exhibited a cloud mirror, for ascertaining the direction in which the clouds are moving.



The mirror is laid on a horizontal support near a window, and fastened so that the point marked north may coincide with the south point of the horizon,—the several points will consequently be reversed. The edge of a conspicuous cloud is brought to the centre of the mirror, and the observer keeps perfectly still until it passes off at the margin, where the true point of the horizon from which the clouds are coming can be read off.






154. Sunshine Recorder.—Mr. Goddard also exhibited an instrument which he calls by this name. It works by letting the sun’s rays pass through a narrow slit, and fall on photographic paper wound round a barrel moved by clock-work; the paper being changed daily, and the photographic impression developed and fixed in the usual manner.








More

;